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Abstract

We develop a finite difference method for solving the elastic wave equation in a heteroge-
neous anisotropic material. The method is fourth order accurate and energy conserving. It
is an extension of the method for isotropic materials developed in [19]. Because it is a node
centered method, it does not have the difficulties encountered when modeling anisotropy with
staggered grid finite difference methods, which are commonly used for elastic wave simulation
in seismology. We use super-grid far-field boundary conditions at the artificial boundaries
of the computational domain. Unlike the commonly used perfectly matched layers (PML)
far-field closure, super-grid boundary conditions are stable for any anisotropic material. Ap-
plications of the proposed method are demonstrated by three-dimensional simulations of
anisotropic wave propagation in crystals.

1 Introduction

This paper describes a fourth order accurate numerical method for calculating wave propa-
gation in general anisotropic elastic materials, i.e., materials in which waves propagate with
different speeds in different directions. Such materials occur in several applications. One class
of anisotropic materials are crystals. Here the directionally dependent wave propagation prop-
erties follow from the symmetries and struture of the atomic bonds in the crystal. In seismic
applications, isotropic layered materials behave anisotropically when they are subjected to waves
where the wavelength is much longer than the thickness of the layers [3]. More generally, spatial
homogenization of a fine grained heterogeneous isotropic elastic material is known to result in a
coarse grained elastic model with anisotropic properties [6, 10]. Fractures in an isotropic mate-
rial can also lead to directionally dependent wave propagation properties [21], i.e., anisotropic
behavior.

Many wave propagation codes for isotropic materials are based on finite difference methods
on staggered grids. Unfortunately, the staggered grid approach is non-trivial to generalize to
general anisotropic materials. In particular, it is not known how to locate the 21 elements of the
stiffness matrix on the staggered grid, such that the numerical method becomes stable. Since an
isotropic material has anisotropic properties when transformed to curvilinear coordinates, similar
stability difficulties occur for staggered grid methods on curvilinear meshes. Node centered
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methods do not have this difficulty. For example, the spectral element method, described in
[12], is naturally formulated for general linear stress-strain relationships, and has successfully
been used for modeling general anisotropy [8].

The present paper has two objectives. First, we describe a fourth order accurate node
centered finite difference scheme for wave propagation in general anisotropic elastic materials.
Our scheme satisfies the principle of summation by parts (SBP) and is a generalization of the
method implemented in the elastic wave propagation code SW4 [16]. The finite difference scheme
is fourth order accurate, stable, and energy conserving. We here present the scheme for a fully
anisotropic material in curvilinear coordinates, which allows for accurate modeling of realistic
topography.

Our second objective is to analyze and numerically evaluate the super-grid far-field truncation
technique for anisotropic elastic materials. Super-grid far-field conditions truncate very large
or unbounded domains to finite extent by adding sponge layers outside the domain of interest.
Inside the layers, the wave equation is modified by a combination of grid stretching and high order
artificial dissipation. Compared to perfectly matched layers (PML) [5], the greatest strength of
the super-grid technique is that the overall numerical method is provably stable, if the underlying
numerical method is stable on a curvilinear grid. Note that the PML equations can have unstable
solutions (growing exponentially in time) for some anisotropic materials [4]. We have previously
proven that the isotropic elastic wave equation with super-grid layers can not have exponentially
growing solutions, because the equations satisfy an energy estimate [17]. In the present paper,
we extend that analysis to general anisotropic elastic materials on curvilinear grids. Another
strength of the super-grid technique is its simplicity and low computational cost. In contrast
to the PML method, super-grid does not rely on augmenting the wave equation with additional
differential equations that govern additional dependent variables. A potential weakness of the
super-grid technique is that it does not achieve the ’perfect’ non-reflecting property of PML.
However, numerical experiments indicate that, if the super-grid layers are sufficiently wide,
artificial reflections from the far-field truncation can be made to be of the same order, or smaller,
than propagation errors from the interior of the domain.

This paper is organized as follows. In Section 2, we review the equations of anisotropic
elastic wave propagation in Cartesian coordinates. Section 3 generalizes the results of Section 2
to curvilinear coordinates. The finite difference discretization is presented in Section 4, and
Section 5 shows some example computations. The computations verify the accuracy of the
proposed finite difference scheme, and demonstrate the performance of the super-grid boundary
conditions. Conclusions are given in Section 6.

2 The anisotropic elastic wave equation

We consider the time-dependent elastic wave equation in a three-dimensional domain x ∈ Ω,
where x = (x(1), x(2), x(3))T are the Cartesian coordinates and u = (u(1), u(2), u(3))T are the
Cartesian components of the three-dimensional displacement vector. In displacement formula-
tion, the elastic wave equation takes the form

ρ
∂2u

∂t2
= ∇ · T (u) + F, x ∈ Ω, t ≥ 0, (1)

subject to appropriate initial and boundary conditions. Here, ρ is the density, T is the stress
tensor, and F is the external forcing per unit volume. In a general anisotropic material, the

2



stress tensor depends on the strain tensor according to Hooke’s law,

Tij(u) =
3∑

k=1

3∑

l=1

CijklEkl(u), Ekl(u) =
1

2

(
∂u(k)

∂x(l)
+
∂u(l)

∂x(k)

)
,

where Cijkl is the stiffness tensor. We adopt Voigt’s vector notation for the symmetric tensors
T and E ,

σ = (T11, T22, T33, T23, T13, T12)T , e = (E11, E22, E33, 2E23, 2E13, 2E12)T . (2)

Note the factor of two in front of the off-diagonal elements of E . Hooke’s law can be written in
matrix notation,

σ = Ce, C =




c11 c12 · · · c16

c12 c22 · · · c26
...

...
. . .

...

c16 c26 · · · c66



. (3)

Here, C is called the stiffness matrix. Its elements are uniquely determined by the stiffness
tensor Cijkl, and it can be shown that C must be symmetric and positive definite [7]. Because
C is symmetric, it has 21 unique elements, corresponding to the 21 parameters of a general
anisotropic material.

Using Voigt notation, the strain vector and the divergence of the stress tensor can be ex-
pressed in terms of the symmetric part of the gradient operator and its transpose, respectively,

e = Gsu, ∇ · T = GT
s σ, GT

s =




∂1 0 0 0 ∂3 ∂2

0 ∂2 0 ∂3 0 ∂1

0 0 ∂3 ∂2 ∂1 0


 , (4)

where ∂k = ∂/∂x(k). From (3) and (4), we can write the elastic wave equation as

ρ
∂2u

∂t2
= Lu+ F, x ∈ Ω, t ≥ 0, (5)

Lu = GT
s CGs u. (6)

The spatial operator L is called the 3 × 3 symmetric Kelvin-Christoffel differential operator
matrix [7].

A more practical form of the equations can be obtain by writing

GT
s u = P T

1 ∂1u+ P T
2 ∂2u+ P T

3 ∂3u, (7)

where the matrices are defined by

P T
1 =




1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0


 , P T

2 =




0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 1 0 0


 , P T

3 =




0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0


 .
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By using (7) in (6), we obtain

Lu =
3∑

j=1

P T
j ∂j(C

3∑

j=k

Pk∂ku) =
3∑

j=1

3∑

k=1

∂j(P
T
j CPk∂ku) =:

3∑

j=1

3∑

k=1

∂j(M
jk∂ku), (8)

where the 3× 3 matrices on the right hand side are defined by

M jk = P T
j CPk. (9)

Hence, each matrix M jk contains a subset of the elements of C, as determined by the matrices
Pj . We refer to Appendix A for the exact expressions of M jk. From the positive definiteness
of C it follows that M11,M22, and M33 are also positive definite. Moreover, the definition (9)
shows that Mkj = (M jk)T . With this notation we can write

Lu = ∂1 (A1∇u) + ∂2 (A2∇u) + ∂3 (A3∇u) , (10)

where

A1∇u :=M11∂1u+M12∂2u+M13∂3u, (11)

A2∇u :=M21∂1u+M22∂2u+M23∂3u, (12)

A3∇u :=M31∂1u+M32∂2u+M33∂3u. (13)

Because Lu is equal to the divergence of the stress tensor, we also have

A1∇u =




T11
T12
T13


 , A2∇u =




T12
T22
T23


 , A3∇u =




T13
T23
T33


 . (14)

From (14) it follows that a boundary with unit normal n = (n(1), n(2), n(3))T has boundary
traction

n · T (u) = n(1)A1∇u+ n(2)A2∇u+ n(3)A3∇u. (15)

A free surface condition corresponds to n · T (u) = 0.

2.1 Energy estimate

For a box-shaped domain, Ω = {0 ≤ x(1) ≤ a(1), 0 ≤ x(2) ≤ a(2), 0 ≤ x(3) ≤ a(3)}, we define the
L2 scalar product of two real vector-valued functions u(x) ∈ ℜ3 → ℜq and v(x) ∈ ℜ3 → ℜq by

(u,v)2 =

∫

Ω

(
q∑

l=1

u(l)v(l)

)
dx(1) dx(2) dx(3). (16)

To derive an energy estimate for the solution of the elastic wave equation, we analyze the
scalar product between ut and (5),

(ut, ρutt)2 = (ut,Lu)2 + (ut,F)2 . (17)

From (10),

(v,Lu)2 = (v, ∂1(A1∇u) + ∂2(A2∇u) + ∂3(A3∇u))2 =: −S(v,u) +B(v,u). (18)
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Here, S and B represent interior and boundary terms, respectively.
After integration by parts, the interior term can be written

S(v,u) = (∂1v,M
11∂1u+M12∂2u+M13∂3u)2

+ (∂2v,M
21∂1u+M22∂2u+M23∂3u)2

+ (∂3v,M
31∂1u+M32∂2u+M33∂3u)2. (19)

Because of (9),
∂jv

TM jk∂ku = ∂jv
TP T

j CPk∂ku = (Pj∂jv)
TCPk∂ku,

so that

S(v,u) =
3∑

j=1

3∑

k=1

(Pj∂jv, CPk∂ku)2 = (
3∑

j=1

Pj∂jv, C
3∑

k=1

Pk∂ku)2 = (Gsv, CGsu)2.

It follows from the above expression and the positive definiteness of C, that S is symmetric and
positive semi-definite,

S(v,u) = S(u,v), S(u,u) = (Gsu, CGsu)2 ≥ 0. (20)

Because C is positive definite, the null-space of S consists of functions u such that Gsu = 0. It
is straightforward to show that there are six linearly independent functions that satisfy Gsu =
0, corresponding to solid body translations in the three coordinate directions and solid body
rotations around the three coordinate axes.

The boundary term of (18) satisfies

B(v,u) =

∫ a(2)

x(2)=0

∫ a(3)

x(3)=0

[
vTA1∇u

]a(1)
x(1)=0

dx(2) dx(3)+

∫ a(1)

x(1)=0

∫ a(3)

x(3)=0

[
vTA2∇u

]a(2)
x(2)=0

dx(1) dx(3) +

∫ a(1)

x(1)=0

∫ a(2)

x(2)=0

[
vTA3∇u

]a(3)
x(3)=0

dx(1) dx(2). (21)

Obviously, B(v,u) = 0 if v satisfies homogeneous Dirichlet conditions. The first term on the
right hand side of (21) is evaluated along the boundaries x(1) = 0 and x(1) = a(1), respectively.
Here the normal is n = (∓1, 0, 0)T , and A1∇u equals the boundary traction. Hence, if a free
surface condition is imposed along x(1) = 0 or x(1) = a(1), we have A1∇u = 0. The same
argument applies to the second and third terms. Therefore, B(v,u) = 0 if u satisfies free
surface conditions on all boundaries. In summary,

B(v,u) = 0, if v = 0, or n · T (u) = 0, for x ∈ ∂Ω. (22)

From the above relations it follows that

1

2

d

dt

(
‖√ρut‖22 + S(u,u)

)
= B(ut,u) + (ut,F)2. (23)

The terms on the left hand side, ‖√ρut‖22 and S(u,u), represent the kinematic and potential en-
ergies, respectively. The boundary term B(ut,u) = 0 if u either satisfies homogeneous Dirichlet
or free surface conditions, because if u = 0 on the boundary then also ut = 0.
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By integrating (23) in time,

E(T ) = E(0) +

∫ T

t=0
(ut,F)2 dt, E(t) :=

1

2

(
‖√ρut‖22 + (Gsu, C(Gsu))2

)
, if B(ut,u) = 0.

This shows that the solution of the elastic wave equation subject to homogeneous Dirichlet or
free surface boundary conditions is a well-posed problem. In the absence of external forcing
(F = 0), we get E(t) = E(0) for all t > 0, i.e., the total energy of the solution is conserved.

3 Generalization to curvilinear coordinates

In this section we consider non-rectangular domains. Our presentation is essentially a general-
ization of the technique developed in [2].

Assume that there is a one-to-one mapping x = x(r) : [0, 1]3 → Ω ⊂ ℜ3,

x(r) =
(
x(1)(r), x(2)(r), x(3)(r)

)T
, r = (r(1), r(2), r(3))T , 0 ≤ r(k) ≤ 1, k = 1, 2, 3,

from the unit cube in parameter space to the domain Ω in physical space. Denote partial
differentiation with respect to the parameter coordinates by ∂̃k = ∂/∂r(k). By the chain rule,

∂̃q =
3∑

p=1

∂x(p)

∂r(q)
∂p, q = 1, 2, 3. (24)

The relation between ∂i and ∂̃j can also be expressed in terms of the inverse mapping function,

r = r(x) : Ω → [0, 1]3, where r(x) =
(
r(1)(x), r(2)(x), r(3)(x)

)T
,

∂i =
3∑

j=1

ξij ∂̃j , i = 1, 2, 3, ξij =
∂r(j)

∂x(i)
. (25)

The derivatives of the forward and inverse mapping functions define the covariant and con-
travariant base vectors,

ak := ∂̃kx =




∂x(1)/∂r(k)

∂x(2)/∂r(k)

∂x(3)/∂r(k)


 , ak := ∇r(k) =




∂r(k)/∂x(1)

∂r(k)/∂x(2)

∂r(k)/∂x(3)


 =




ξ1k

ξ2k

ξ3k


 , k = 1, 2, 3, (26)

respectively. It is well-known that the contravariant base vectors can be expressed in terms of
the covariant base vectors (see [22] for details),

ai =
1

J
(aj × ak) , (i, j, k) cyclic, J = det |a1 a2 a3| , (27)

Here, J is the Jacobian of the forward mapping function. The above relation provides a conve-
nient way of calculating the metric coefficients ξij , which are needed in the curvilinear formula-
tion of the elastic wave equation. In the following we assume that the mapping is non-singular,
with 0 < J <∞.

In Cartesian coordinates (left side of Figure 1), the elastic wave equation takes the form (5)-
(6). In curvilinear coordinates, it is natural to formulate the elastic wave equation as
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(2)

1

Γ3r (1)

Γ4

Γ3

Γ2Γ1

Γ2

Γ4

r
(2)

x(2)

x(1) r(1)

r

Γ

Figure 1: The mapping between physical (Cartesian) space (left) and parameter space (right)
in the two-dimensional case. Here, boundary segments Γ1, Γ2, Γ3, and Γ4 are mapped to to
r(1) = 0, r(1) = 1, r(2) = 0, and r(2) = 1, respectively.

ρJ
∂2u

∂t2
= JLu+ JF, r ∈ [0, 1]3, t ≥ 0. (28)

We introduce the curvilinear mapping into (7) to obtain

Gsu =
3∑

j=1

Pj∂ju =
3∑

j=1

Pj

3∑

k=1

ξjk∂̃ku =
3∑

k=1

P̃k∂̃ku,

where

P̃k =
3∑

j=1

ξjkPj .

This definition gives the divergence of the stress tensor in curvilinear coordinates,

Lu = GT
s CGsu =

3∑

j=1

P̃ T
j ∂̃j(C

3∑

k=1

P̃k∂̃ku) =
1

J

3∑

j=1

3∑

k=1

∂̃j(JP̃
T
j CP̃k∂̃ku). (29)

Here we used the metric identities ∂̃1(Jξk1) + ∂̃2(Jξk2) + ∂̃3(Jξk3) = 0, k = 1, 2, 3, which follow
from (27) (also see [22]). This identity allows the term JP̃ T

j to be moved inside the differentiation

∂̃j on the right hand side of (29). We define the matrices

N jk = JP̃ T
j CP̃k, (30)

and rewrite (29) of the same form as (10)–(13),

JLu = ∂̃1

(
Ã1∇̃u

)
+ ∂̃2

(
Ã2∇̃u

)
+ ∂̃3

(
Ã3∇̃u

)
, (31)
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where

Ã1∇̃u := N11∂̃1u+N12∂̃2u+N13∂̃3u, (32)

Ã2∇̃u := N21∂̃1u+N22∂̃2u+N23∂̃3u. (33)

Ã3∇̃u := N31∂̃1u+N32∂̃2u+N33∂̃3u. (34)

The definition (30) makes it straightforward to verify that the matrices N jk have the same
properties as the matrices M jk, i.e., N11, N22, and N33 are positive definite and Nkj = (N jk)T .

3.1 Boundary conditions

To transform a free surface boundary condition to curvilinear coordinates, we first note that the
boundary normal can be represented by the metric derivatives. For example, along r(1) = 0 or
r(1) = 1, the outwardly directed unit normal satisfies

n :=




n(1)

n(2)

n(3)


 = ∓ ∇r(1)

|∇r(1)| =
∓1√

(ξ11)
2 + (ξ21)

2 + (ξ31)
2




ξ11

ξ21

ξ31


 , r(1) = 0, or r(1) = 1,

where the minus sign applies to r(1) = 0. The components of the stress tensor are given by (14).
Using (25), the gradient of u in (11)-(13) can be expressed in terms of derivatives with respect
to the parameter coordinates. After some straight forward algebra,

n · T =
∓1

J |∇r(1)|
(
N11∂̃1u+N12∂̃2u+N13∂̃3u

)
, r(1) = 0, 1. (35)

The definition of Ã1∇̃u in (32) finally gives

n · T =
∓1

J |∇r(1)|Ã1∇̃u, r(1) = 0, 1. (36)

In a similar way,

n · T =
∓1

J |∇r(2)|Ã2∇̃u, r(2) = 0, 1, (37)

n · T =
∓1

J |∇r(3)|Ã3∇̃u, r(3) = 0, 1. (38)

3.2 Energy estimate

By using (28)-(31), the elastic wave equation in curvilinear coordinates can be written

ρ
∂2u

∂t2
=

1

J

[
∂̃1

(
Ã1∇̃u

)
+ ∂̃2

(
Ã2∇̃u

)
+ ∂̃3

(
Ã3∇̃u

)]
+ F, r ∈ [0, 1]3, t ≥ 0. (39)

In curvilinear coordinates, the volume element in an integral is scaled by J , and the L2 scalar
product (16) becomes

(u,v)2 =

∫

r∈[0,1]3

(
q∑

l=1

u(l)v(l)

)
J dr(1) dr(2) dr(3). (40)
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An energy estimate can be derived in the same way as in the Cartesian case, because the factor
J in the scalar product cancels the 1/J on the right hand side of (39). Partial integration
gives a spatial decomposition of the form (18). The only difference is that the matrices M jk,
which describe the material properties in the Cartesian case, are replaced by the matrices N jk,
which describe the corresponding material properties in parameter space r ∈ [0, 1]3. Since this
is the only difference, the interior term S(v,u) is symmetric and positive semi-definite also
in curvilinear coordinates. In curvilinear coordinates, free surface conditions take the form
(36)-(38), and Dirichlet boundary conditions are transformed trivially. Hence, the boundary
term B(ut,u) = 0 if u either satisfies free surface or homogeneous Dirichlet conditions. Under
such boundary conditions, the elastic wave equation in curvilinear coordinates is therefore a
well-posed problem.

3.3 Isotropic elastic material in curvilinear coordinates

In the special case of an isotropic elastic material, we have

M11
iso =




2µ+ λ 0 0

0 µ 0

0 0 µ


 , M12

iso =




0 λ 0

µ 0 0

0 0 0


 , M13

iso =




0 0 λ

0 0 0

µ 0 0


 ,

M21
iso = (M12

iso)
T , M22

iso =




µ 0 0

0 2µ+ λ 0

0 0 µ


 , M23

iso =




0 0 0

0 0 λ

0 µ 0


 ,

M31
iso = (M13

iso)
T , M32

iso = (M23
iso)

T , M33
iso =




µ 0 0

0 µ 0

0 0 2µ+ λ


 .

Here, λ and µ are the first and second Lamé parameters, respectively.
In curvilinear coordinates, the corresponding material properties are described by the ma-

trices N ij , defined in (30). For example, N11 satisfies

N11
iso = Jµ

(
ξ211 + ξ221 + ξ231

)



1 0 0

0 1 0

0 0 1


+ J(λ+ µ)




ξ211 ξ11ξ21 ξ11ξ31

ξ11ξ21 ξ221 ξ21ξ31

ξ11ξ31 ξ21ξ31 ξ231


 .

The remaining N ij are of a similar form. For a general curvilinear mapping, note that the
transformed matrices do not have any zero elements. Hence, because of the coordinate mapping,
the isotropic material has anisotropic properties in curvilinear parameter space.

4 Discretization of the elastic wave equation

To conserve space we only describe the discretization in curvilinear coordinates. The Cartesian
case follows by using the semi-trivial mapping function x(k)(r(k)) = a(k)r(k), k = 1, 2, 3, where
a(k) are constants.
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We consider the elastic wave equation in curvilinear coordinates (28) where JLu is given by
(31). We re-order the terms of the spatial operator such that

Lu =
1

J

[
∂̃1(N

11∂̃1u) + ∂̃2(N
22∂̃2u) + ∂̃3(N

33∂̃3u) + ∂̃1(N
12∂̃2u) + ∂̃1(N

13∂̃3u)

+∂̃2(N
21∂̃1u) + ∂̃2(N

23∂̃3u) + ∂̃3(N
31∂̃1u) + ∂̃3(N

32∂̃2u)
]
. (41)

A uniform grid, r
(1)
i = (i − 1)h1, i = 0, . . . , n1 + 1, r

(2)
j = (j − 1)h2, j = 0, . . . , n2 + 1, and

r
(3)
k = (k − 1)h3, k = 0, . . . , n3 + 1 discretizes the domain in parameter space. Here, the grid
spacings are h1 = 1/(n1 − 1), h2 = 1/(n2 − 1), and h3 = 1/(n3 − 1). The points outside the
domain are ghost points, which are used to impose the boundary conditions.

Before presenting our spatial discretization of (41), we first review some well-known proper-
ties of summation-by-parts (SBP) finite difference operators in a one-dimensional setting.

4.1 SBP finite difference operators

Assume that a one dimensional domain is discretized by the uniform grid xi = (i − 1)h for
i = 0, . . . , n + 1, where the domain boundaries are at i = 1 and i = n. Let ui be a real-valued
function defined on the grid. We say that the difference operator D, approximating d/dx,
satisfies the property of SBP if

(u,Dv)h1 = −(Du, v)h1 − u1v1 + unvn, (42)

in a scalar product,

(u, v)h1 = h
n∑

i=1

ωiuivi, 0 < ωi <∞, (43)

where ωi are the weights in the discrete scalar product. The grid function Dui is defined at
all points i = 1, . . . , n. Away from the boundaries, Dui equals a centered difference operator.
In order to satisfy (42), the coefficients in D are modified at a few points near each boundary.
When using a scalar product of the form (43), it is well known that (42) can only be satisfied if
the order of the truncation error in Du is reduced by a factor of two at a few points near each
boundary. It is possible to improve the truncation error near the boundary by using so-called
full norm SBP operators [20]. However, these operators can lead to instabilities with variable
coefficients and will not be used here.

In the following our presentation assumes a scalar product of the form (43).
SBP operators of order p away from the boundaries and order p/2 near the boundaries, for

p = 2, 4, 6, 8, are well-documented in the literature, see e.g. [20]. It is theoretically possible to
derive even higher order accurate SBP operators, but the stencils become very wide and the
coefficients depend on a number of parameters which can be difficult to determine.

Second derivative terms of the type (a(x)ux)x) appear in the elastic wave equation. Here
a(x) is a known function that describes a material property such as the shear modulus. These
terms could be approximated by applying D twice. However, this approach leads to difficulties
with odd-even modes, meaning that the null space of D(aDu)j contains highly oscillatory grid
functions. Furthermore, because of the boundary modification, the truncation error of D is not
smooth near the boundary, leading to additional loss of accuracy during the second application
of D.
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In [19], we constructed a difference operator G(a)u approximating (aux)x, which does not
have problems with odd-even modes. This operator satisfies the SBP identity

(v,G(a)u)h1 = −(Dv, aDu)h1 + (v, P (a)u)hr1 − v1a1Su1 + vnanSun. (44)

Here, S is a difference operator approximating the first derivative on the boundary, to full order
of accuracy (p). The operator is of the form Su1 = (1/h)

∑m−1
k=0 skuk. Note that Su1 makes use

of the ghost point value u0. Sun is similar, and uses the ghost point value un+1. The positive
semi-definite operator P (a) is small and non-zero for odd-even modes. We remark that the
scalar product (v, u)hr1 is weighted differently than (u, v)h1, see [19] for details.

The operator G(a) derived in [19] is fourth order accurate in the interior and second order
near the boundary. Because the elastic wave equation is solved in second order formulation, two
orders of accuracy are gained in the solution, which becomes fourth order accurate in maximum
norm. Extensions to even higher order is possible, but not pursued here.

The spatial operator of the elastic wave equation (41) consists of terms like ∂̃i(N
ij ∂̃ju). Here

N ij is a 3×3 matrix with elements nijpq. When i = j, the term is approximated by G(N ii)u,
defined as

G(N ii)u :=




(G(N ii)u)1

(G(N ii)u)2

(G(N ii)u)3


 , (G(N ii)u)p =

3∑

q=1

G(niipq)u
(q), p = 1, 2, 3, (45)

where G(niipq)u
(q) is the scalar difference operator described above.

For vector valued grid functions, we approximate ∂̃ju using the operator Dju, which is
defined componentwise. This operator is used to approximate ∂̃i(N

ij ∂̃ju) when i 6= j.
The vector version of the SBP identities (42) and (44) are

(u, Dv)h1 = −(Du,v)h1 − uT
1 v1 + uT

nvn, (46)

(v, G(N)u)h1 = −(Dv, NDu)h1 + (v, P (N)u)hr1 − vT
1N1Su1 + vT

nNnSun, (47)

as can be seen by component-wise application of the corresponding scalar identities.

4.2 Spatial discretization

The spatial operator (41) is discretized as

Lhui,j,k =
1

Ji,j,k

[
G1(N

11)ui,j,k +G2(N
22)ui,j,k +G3(N

33)ui,j,k

+D1(N
12D2ui,j,k) +D1(N

13D3ui,j,k)

+D2(N
21D1ui,j,k) +D2(N

23D3ui,j,k)

+D3(N
31D1ui,j,k) +D3(N

32D2ui,j,k)
]
, (48)

for i = 1, . . . , n1, j = 1, . . . , n2, and k = 1, . . . , n3. Here, Dm is the standard SBP finite difference
operator acting in one of the curvilinear coordinate directions m = 1, 2, 3. Similarly, Gm(N)
denotes the second derivative operator (45) acting in direction m. The discrete scalar product
is defined by

(u,v)h = h1h2h3

n1∑

i=1

n2∑

j=1

n3∑

k=1

ω
(1)
i ω

(2)
j ω

(3)
k Ji,j,ku

T
i,j,kvi,j,k.
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The matrices N ij are defined by (30). If analytical expressions for the derivatives of the coor-
dinate mapping are available, they simply need to be evaluated at the grid points. However,
if they are not available, they can instead be approximated by sufficiently accurate numerical
differentiation,

∂x(q)

∂r(p)

∣∣∣∣∣
i,j,k

≈ Dpx
(q)
i,j,k, p = 1, 2, 3, q = 1, 2, 3.

In this case, the covariant base vectors follow from (26), with ∂x(q)/∂r(p) replaced by Dpx
(q).

The metric coefficients ξpq and the discretized Jacobian, Ji,j,k are given by formula (27).

Remark 1. The difference operators can be evaluated undivided, i.e., the grid sizes, h1, h2, and
h3 can be set to one when evaluating Du and G(N)u, if also the metric difference approximations

Dpx
(q)
i,j,k are treated in the same way. This is because the hi’s cancel in the expression for Lhu.

The discrete analogue of (18) is

(v,Lhu)h = −Sh(v,u) +Bh(v,u),

where Sh is symmetric and positive semi-definite, and Bh contains boundary terms. To verify
this equality we may proceed in the following way. We first multiply (48) by ω(1)ω(2)ω(3)JvT

from the left, sum over all grid points, and finally apply the one-dimensional identies (46) and
(47) along each curvilinear coordinate direction. This results in

(v,Lhu)h = −(D1v, N
11D1u)h − (D1v, N

12D2u)h − (D1v, N
13D3u)h − (D2v, N

21D1u)h

− (D2v, N
22D2u)h − (D2v, N

23D3u)h − (D3v, N
31D3u)h − (D3v, N

32D2u)h

− (D3v, N
33D3u)h − (v, P1(N

11)u)hr − (v, P2(N
22)u)hr − (v, P3(N

33)u)hr +Bh(v,u). (49)

All terms on the right hand side, except the last one, define Sh(v,u). The boundary term is
given by

Bh(v,u) = h2h3

n2∑

j=1

n3∑

k=1

ω
(2)
j ω

(3)
k

[
vT
i,j,kÃ1,h∇̃hui,j,k

]i=n1

i=1

+ h1h3

n1∑

i=1

n3∑

k=1

ω
(1)
i ω

(3)
k

[
vT
i,j,kÃ2,h∇̃hui,j,k

]j=n2

j=1

+ h1h2

n1∑

i=1

n2∑

j=1

ω
(1)
i ω

(2)
j

[
vT
i,j,kÃ3,h∇̃hui,j,k

]k=n3

k=1
, (50)

with

Ã1,h∇̃hu = N11S1u+N12D2u+N13D3u, (51)

Ã2,h∇̃hu = N21D1u+N22S2u+N23D3u, (52)

Ã3,h∇̃hu = N31D1u+N32D2u+N33S3u. (53)

Energy conserving boundary conditions, i.e., boundary conditions that make Bh(v,u) = 0,
can be imposed either by a homogeneous Dirichlet condition,

vi,j,k = 0, (i, j, k) on the boundary,
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or by a free-surface condition,

Ãq,h∇̃hui,j,k = 0, (i, j, k) on the boundary.

Here, q = 1, 2, or 3 depending on which side is being considered. For example, on the boundary
k = 1, we have

N31
i,j,1D1ui,j,1 +N32

i,j,1D2ui,j,1 +N33
i,j,1S3ui,j,1 = 0, i = 1, . . . , n1, j = 1, . . . , n2.

This constitutes a system of three equations for the three unknowns ui,j,0,

s0N
33
i,j,1ui,j,0 = −N33

i,j,1

m−1∑

k=1

skui,j,k −N31
i,j,1D1ui,j,1 −N32

i,j,1D2ui,j,1.

Because N33
i,j,1 is positive definite and s0 6= 0, this system always has a unique solution. Note

that the system only couples the three ghost point values ui,j,0, for each (i, j). There is no
coupling along the boundary.

By comparing (51) with (35), we note that the former is an approximation of the scaled
boundary traction, where the scaling factor J |∇r(1)| is the surface measure. To make this
obvious, we can write the first sum of the right hand side of (50) as

n2∑

j=1

n3∑

k=1

ω
(2)
j ω

(3)
k

[
Ji,j,k|∇r(1)|vT

i,j,k

1

Ji,j,k|∇r(1)|
Ã1,h∇̃hui,j,k

]i=n1

i=1

=

n2∑

j=1

n3∑

k=1

ω
(2)
j ω

(3)
k

[
Ji,j,k|∇r(1)|vT

i,j,k(n · τh)i,j,k
]i=n1

i=1
, (54)

and similarly for the other two sums. Here, n · τh = 1
J |∇r(1)|

Ã1,h∇̃hu is the discretization of the

boundary traction (35).
Finally, when energy conserving boundary conditions are imposed, the semi-discrete energy

estimate
1

2

d

dt
((ρut,ut)h + Sh(u,u)) = (ut,F)h,

follows in the same way as the corresponding estimate for the continuous problem. This leads
to stability if the energy, (ρut,ut)h + Sh(u,u), is positive. Our SBP discretization has the
property that Sh is positive semi-definite with a null space that is a discretized approximation
of the null space of the continuous operator, i.e., solid body translations and rotations. For
example, the odd-even modes, uj = (−1)j are not in the null space of Sh because of the terms
(u, Pj(N

jj)u)hr, which are positive for such grid functions [19]. Also note that solid body
translations and rotations are not possible if u satisfies homogeneous Dirichlet conditions on
at least part of the boundary. In this case Sh(u,u) becomes positive definite and the SBP
discretization is stable.

4.3 Time discretization

The equations are advanced in time with an explicit time integration method. As with all
explicit time stepping methods, the time step must not exceed the CFL stability limit. With a
Newmark time stepping scheme,

un+1 − 2un + un−1

∆2
t

= Lhu
n + Fn, n = 0, 1, . . . , (55)
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the expression for the CFL time step limit is

∆2
t ζ

4
≤ 1. (56)

The spectral radius ζ = maxu 6=0 Sh(u,u)/(u, ρu)h is difficult to compute for a general heteroge-
neous material, even when the material is isotropic. As an approximation we consider the elastic
wave equations in a homogeneous material with periodic boundary conditions. A von Neumann
analysis of the Fourier transformed problem, in the case of second order accuracy, shows that
the largest eigenvalue of Sh in an isotropic elastic material is well approximated by

ζ =
4

h2
2µ+ λ+ µ+ µ

ρ
=

4

h2
(
c2p + 2c2s

)
. (57)

Here, cp and cs are the longitudinal and transverse phase velocities, respectively. In a general
anisotropic material, the square of the phase velocity, c2 is obtained as the eigenvalues of the
Christoffel equation,

c2r =
1

ρ

3∑

j=1

3∑

k=1

njnkM
jkr. (58)

The eigenvector, r, is also called the polarization vector. In general, the phase velocity depends
on the direction of wave propagation n = (n1, n2, n3)

T , |n| = 1. Since (57) is the sum of the
three eigenvalues (multiplied by a factor of four), it is reasonable to assume that the sum of
the eigenvalues would be a good approximation of ζ/4, also in the fully anisotropic case. The
sum of the eigenvalues of a matrix equals the trace of the matrix, i.e., the sum of its diagonal
elements. Hence, the sum of the eigenvalues in the direction n = (n1, n2, n3)

T is given by

1

ρ
Tr(

3∑

j=1

3∑

k=1

njnkM
jk) =

1

ρ

3∑

j=1

3∑

k=1

njnkTr(M
jk), (59)

where Tr(M) denotes the trace ofM . The expression (59) is a quadratic form, whose maximum
over all directions n equals the maximum eigenvalue of the matrix

T =
1

ρ




Tr(M11) Tr(M12) Tr(M13)

Tr(M21) Tr(M22) Tr(M23)

Tr(M31) Tr(M32) Tr(M33)


 .

Calculating the largest eigenvalue of this symmetric 3×3 matrix is inexpensive. Furthermore,
the calculation only needs to be done once, before the start of the time stepping, because the
material properties do not change in time. We then use the maximum eigenvalue of T as an
approximation of ζ/4. If the material model has heterogeneous properties, the procedure is
repeated at each grid point of the mesh, and the maximum ζ over the computational grid is
used in (56).

The Newmark scheme (55) is only second order accurate in time. The calculations shown in
this paper use a predictor-corrector modification to obtain fourth order accuracy. It turns out
that the fourth order scheme has a somewhat larger stability limit for the time step [19], but
the procedure to estimate the largest eigenvalue ζ remains the same.
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4.4 Super-grid boundary conditions

We truncate unbounded or semi-bounded domains by using the super-grid approach [1, 17]. In
this technique, damping layers are added outside the domain of interest. The idea is to mimic
a very large physical domain, where reflections from the boundary would need a very long time
to return to the domain of interest. Similar to our treatment of general domains, a coordinate
mapping is used in the layers. The elastic wave equation is discretized on a regular grid in
parameter space, and the mapping corresponds to stretching the grid to cover a larger physical
domain. In parameter space, the mapping acts by gradually slowing down and compressing the
waves as they progress through the layer. A high order artificial dissipation operator is applied to
damp out waves that become poorly resolved due to the coordinate mapping. Hence, the super-
grid technique simply combines a real-valued stretching function with artificial dissipation. This
makes it more straightforward to implement compared to the PML method [5], where additional
differential equations must be solved for auxilliary functions in the layers.

A very important property of the super-grid method is that, if the underlying scheme is stable
on a curvilinear grid, it will also be stable with the artificial dissipation [17]. By using sufficiently
smooth stretching functions and high order artificial damping terms, we demonstrated in [17]
that, if the layers are sufficiently wide, artificial reflections can be made to converge to zero at
the same rate as the interior scheme. In that paper we considered the isotropic elastic wave
equation in heterogeneous materials. Here, we generalize the approach to the anisotropic case,
where it is known that the PML technique can lead to stability problems [4].

For simplicity, we describe the super-grid technique for a Cauchy (whole-space) problem
(−∞ < x(k) < ∞), with super-grid layers on all sides of the computational domain. This
approach is straightforward to generalize to more general configurations by omitting the layers
on some sides of the domain. The stretching functions are one-dimensional, i.e., x(k) = x(k)(r(k))
for k = 1, 2, 3. Only the diagonal terms of the metric tensor ξij are non-zero and the curvilinear
transformation is of the form

∂k = φ(k)(r(k))∂̃k, φ(k) =
1

∂x(k)/∂r(k)
, k = 1, 2, 3, ξij =

{
φ(i), i = j,

0, i 6= j.
(60)

The Jacobian of the transformation satisfies J−1 = φ(1)φ(2)φ(3).
An artificial dissipation term of order 2p is added in the super-grid layers. On the semi-

discrete level, the elastic wave equation with super-grid layers becomes

ρ
d2u

dt2
= Lhu+ F− ε(−1)pQ2p

(
du

dt

)
, ε = γ2ph

2p−1 cmax

Ccfl
. (61)

Here, γ2p is a constant that depends on the order of the dissipation and Ccfl is the CFL number
that determines the time step for the fully discretized wave equation. For the isotropic elastic

wave equation, we use cmax =
√
c2p + 2c2s, where cp and cs are the compressional and shear wave

speeds. Section 4.3 discusses estimation of the wave speeds for the fully anisotropic equations.
The dissipation term in (61) is of the form

Q2pv =




∑3
k=1 φQ

(k)
2p (σ

(k)ρ)v(1)
∑3

k=1 φQ
(k)
2p (σ

(k)ρ)v(2)
∑3

k=1 φQ
(k)
2p (σ

(k)ρ)v(3)


 . (62)
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Each term in the sums of (62) acts along one of the coordinate directions, and σ(k) is a smoothly
varying dissipation coefficient. The damping is scaled by density (ρ) to make it balance the left
hand side of (61). This allows γ2p to be constant when ρ varies in space.

We will use either fourth or sixth order artificial dissipation, corresponding to p = 2 or
p = 3. When a fourth order (p = 2) artificial dissipation is used, each one-dimensional term is
discretized according to

Q
(k)
4 (σρ)vj := D

(k)
+ D

(k)
−

(
σjρj D

(k)
+ D

(k)
− vj

)
. (63)

The sixth order (p = 3) artificial dissipation is discretized according to

Q
(k)
6 (σρ)vj := D

(k)
+ D

(k)
− D

(k)
+

(
σj−1/2ρj−1/2D

(k)
− D

(k)
+ D

(k)
− vj

)
, (64)

where the average is used for the coefficient, e.g., σj−1/2 = (σj + σj−1)/2.
In [17] we used the energy method to prove stability of the discretized elastic wave equation

with supergrid stretching and artificial dissipation. This can be done without the SBP boundary
modifications at the damping layer boundaries. Instead, a sufficient number of ghost points are
introduced such that the centered finite difference operators can be applied up to the outer
boundary of the damping layer. Homogeneous Dirichlet conditions are imposed at all ghost
points. This procedure leads to a SBP-like stability estimate, see [17] for details.

The stretching function φ(r) and the damping functions σ(k)(r) are constructed from an
auxilliary function ψ(ξ), which smoothly transitions from one to zero and then back to one,

ψ(ξ) =





1, ξ ≤ 0,

P (1− ξ/ℓ), 0 < ξ < ℓ,

0, ℓ ≤ ξ ≤ 1− ℓ,

P ((ξ − 1)/ℓ+ 1), 1− ℓ < ξ < 1,

1, ξ ≥ 1.

(65)

Here we use the polynomial function P (η) = η6(462−1980η+3465η2−3080η3+1386η4−252η5),
which satisfies P (0) = 0, P (1) = 1, and makes ψ(ξ) five times continously differentiable. The
one-dimensional stretching and damping functions are defined by

φ(r) = (1− (1− εL)ψ(r)) , σ(r) =
ψ(r)

φ(r)
. (66)

This means that φ(r) = 1, and σ(r) = 0 for ℓ ≤ r ≤ 1 − ℓ. Note that the constant εL > 0 is
not related to the damping coefficient ε in (61). Throughout the numerical experiments in this
paper, we use εL = 10−4. Examples of the functions ψ and φ are plotted in Figure 2.

Along the sides of the domain, where only one super-grid damping layer is active, we use a
one-dimensional damping function. For example,

σ(1)(r(1), r(2), r(3)) = σ(r(1)), 0 ≤ r(1) ≤ ℓ, ℓ ≤ (r(2), r(3)) ≤ 1− ℓ.

If the one-dimensional damping function is used where several super-grid layers meet (at edges or
corners of the computational domain), it is necessary to reduce the damping coefficient (γ2p) to
avoid making the explicit time-stepping scheme unstable. However, this reduces the strength of
the damping where only one super-grid layer is active, which leads to larger artificial reflections.
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Figure 2: The stretching function φ(r) (red) and the auxilliary function ψ(r) (blue), which
controls the strength of the damping. In this case, the width of each super-grid layer is ℓ = 0.2.

A simple fix is provided by introducing the linear taper function τ ,

τ(r) =





α, r < 0,

α+ (1− α)r/ℓ, 0 ≤ r ≤ ℓ,

1, r > ℓ.

For example, along the edge 0 ≤ r(1) ≤ ℓ, 0 ≤ r(2) ≤ ℓ, we define the two-dimensional damping
functions {

σ(1)(r(1), r(2), r(3)) = σ(r(1))τ(r(2)),

σ(2)(r(1), r(2), r(3)) = τ(r(1))σ(r(2)),
ℓ ≤ r(3) ≤ 1− ℓ,

where σ(r) is the one-dimensional damping function (66). Using this construction, the strength
of the damping is determined by

I2(r
(1), r(2)) := (σ(1) + σ(2))φ = τ(r(2))ψ(r(1)) + τ(r(1))ψ(r(2)),

where ψ(r) is the auxiliary function (65). When α = 1/3, this construction satisfies max I2 = 1.
Away from the edge, the strength of the damping is the same as in the one-dimensional case
because ψ(r) = 0 and τ(r) = 1 for r ≥ ℓ. Therefore, I2(r

(1), r(2)) = ψ(r(2)) for r(1) ≥ ℓ and
I(r(1), r(2)) = ψ(r(1)) for r(2) ≥ ℓ. At the edge, τ(0) = 1/3 and ψ(0) = 1, giving I2(0, 0) = 2/3.
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The function I2(r
(1), r(2)) has a local maxima along the diagonal r(1) = r(2) ≈ 0.31ℓ, where

I2 ≈ 0.983. The tapering approach is straight forward to generalize to the other edges of the
computational domain.

Near a corner where three super-grid layers meet, the strength of the damping equals I3 :=
(σ(1) + σ(2) + σ(3))φ. For r(k) ≤ ℓ, we generalize the tapering approach by defining





σ(1)(r(1), r(2), r(3)) = σ(r(1))τ(r(2))τ(r(3)),

σ(2)(r(1), r(2), r(3)) = τ(r(1))σ(r(2))τ(r(3)),

σ(3)(r(1), r(2), r(3)) = τ(r(1))τ(r(2))σ(r(3)).

This construction also satisfies max I3 = 1. The strength of the damping has a local maxima
along the space-diagonal r(1) = r(2) = r(3) ≈ 0.37ℓ where I3 ≈ 0.823. Also note that the
two-dimensional strength is recovered along edges of the three-dimensional domain (where two
super-grid layers meet), because I3(r

(1), r(2), r(3)) = I2(r
(1), r(2)) for r(3) ≥ ℓ, etc.

The tapering approach is of significant practical importance in three-dimensional calcula-
tions, where up to three super-grid layers can meet at corners. This is because the tapering
keeps the maximum strength of the super-grid damping approximately the same along sides,
edges, and corners of the computational domain. Let γ2p be the damping coefficient that makes
the time stepping stable in the case with super-grid damping in only one direction. With the
tapering approach, this value will also work when three super-grid layers meet at a corner.
Without the tapering approach, the time stepping would become unstable unless the damping
coefficient is reduced to approximately γ2p/3. Because the maximum strength of the damping is
reduced by a factor of three along the sides of the domain (where only one super-grid damping
term is active), the layers would need to be approximately three times thicker to damp out
the solution to the same level. Since the super-grid layers are added outside the domain of
interest, tripling their thickness would significantly increase the total number of grid points in
a three-dimensional case, and make the calculation much more expensive.

5 Numerical experiments

All simulations reported here were performed with the open source code SW4, version 1.1 [18].
We consider wave propagation in Indium Arsenide (InAs), which is a crystal with cubic

symmetry. When the coordinate axes are oriented along the bonds of the cubic crystal, its
density and stiffness matrix are given by (see [13])

ρ = 5.67 · 103, C =




83.29 45.26 45.26 0 0 0

45.26 83.29 45.26 0 0 0

45.26 45.26 83.29 0 0 0

0 0 0 39.59 0 0

0 0 0 0 39.59 0

0 0 0 0 0 39.59




· 109,

using SI-units.
We start by recalling some fundamental aspects of anisotropic wave propagation, see e.g. [7]

for details. The wave propagation properties of an anisotropic material are often quantified by
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its phase and group velocities, as well as its slowness surfaces. A plane wave propagating in unit
direction n = (n1, n2, n3)

T can be described by

u(x, t) = rei(k·x−ωt) = reiξ(n·x−ct), k = ξn, ξ = |k|, s =
k

ω
.

Here, r is the polarization vector, k = (k1, k2, k3)
T is the wave vector, ω the angular frequency,

ξ the (angular) wave number, and s is the slowness vector. Assuming homogeneous material
properties, inserting the plane wave ansatz into the elastic wave equation (5) with F = 0 and
using (8), leads to the dispersion relation (58), i.e., the Christoffel equation. The phase velocity,

c =
ω

ξ
=

1

|s| ,

equals the (positive) square root of an eigenvalue c2 of the Christoffel equation, which are real
because the matrix in (58) is symmetric and positive definite. The slowness surface corresponding
to phase velocity c is defined by s = n/c. In spherical coordinates, (r, φ, ψ), we have n = n(φ, ψ)
and the slowness surface is given by r(φ, ψ) = 1/c(φ, ψ). The group velocity, in which direction
energy propagates, is a vector with three components defined as

vg = (∂ω/∂k1, ∂ω/∂k2, ∂ω/∂k3)
T .

One can show that the group velocity vector is orthogonal to its corresponding slowness sur-
face [4].

In general the Christoffel equation has three eigenvalues, corresponding to three slowness
surfaces. A slowness curve is a cross-section of a slowness surface. In Figure 3 we show the
slowness curves for InAs in the (x(1), x(2)) plane. The curves are plotted in polar coordinates
(r, θ). For each angle θ, we solve the Christoffel equation in the direction (n(1), n(2), n(3)) =
(cos θ, sin θ, 0), resulting in three eigenvalues c2k(θ), k = 1, 2, 3. The corresponding radii in polar
coordinates are rk(θ) = 1/ck(θ).

The innermost curve (black color, labeled “L”) corresponds to the quasi-longitudinal wave.
It has the largest phase velocity, which only varies mildly with the direction of wave propagation.
The second fastest wave is shown in blue color and labeled “S1”. This is a quasi-transverse wave
with the same phase velocity in all directions, corresponding to a circular slowness curve. The
other quasi-transverse wave (red color, labeled “S2”) has the slowest phase velocity, with the
minima cmin = 1.831 · 103 at θ = π/4, 3π/4, 5π/4, and 7π/4.

5.1 The whole-space problem with super-grid layers

We shall solve the anisotropic elastic wave equation numerically and we start by studying a
Cauchy (whole-space) problem, truncated by super-grid layers on all sides of the domain. We
take the domain of interest to be (x(1), x(2), x(3)) ∈ [1.6 · 103, 10.4 · 103]3. In the unit cube of
parameter space, the supergrid layers have thickness ℓ = 1.6/12 ≈ 0.133. In the figures below,
cross-sections of the solution are plotted as function of scaled parameter coordinates, to equal
(x(1), x(2), x(3) within the domain of interest. In this scaled parameter space, the supergrid layers
have thickness 1.6 · 103.

The solution is driven by an isotropic point moment tensor source,

f(x, t) = g(t)M0




1 0 0

0 1 0

0 0 1


∇δ(x− xs), M0 = 1017, (67)
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Figure 3: Slowness curves for InAs for wave propagation in the (x(1), x(2)) plane. Units are in
[s/m].

located at xs = (6, 6, 6) · 103. Here, ∇δ is the gradient of the Dirac distribution. The source
time function is the Gaussian,

g(t) =
1√
2πσ

e(t−t0)2/2σ2
, σ =

1

16
, t0 = 0.375. (68)

We estimate the dominant frequency in the Gaussian by f0 = 1/(2πσ) ≈ 2.55 and the high-
est significant frequency by fmax ≈ 2.5f0 ≈ 6.37. The point moment tensor source term is
discretized in space by using the technique described in [14].

In Figure 4 we show the magnitude of the displacement in the x(3) = 6 · 103 plane at time
t = 1.5. The outermost wave front corresponds to the quasi-compressional wave. Corresponding
to the shape of its slowness curve (labeled “L” in Figure 3), it propagates slightly faster along
the diagonal than along the coordinate axes. The waves closer to the center of the figure are
of quasi-shear type, which are generated by the moment tensor source (67), even though it is
isotropic. The complex wave fronts are a result of the directional variation in phase velocity.
Because the motion is generated by an point source, all wave fronts are initially circular, but the
quasi-shear waves quickly develop a more complicated pattern. In particular, note the swallow
tail-shapes of the the slowest quasi-shear wave. They are due to the inflection points in the “S2”
slowness curve in Figure 3.

The anisotropic properties of InAs make it challenging to truncate the computational do-
main in a stable and accurate way. Recall that the group velocity vector is orthogonal to the
slowness curve. The slowness curve of the quasi-shear wave “S2” has several segments where
one component of the slowness and group velocity vectors have opposing signs. According to
the theory by Bécache et al. [4], such materials can lead to exponential growth in time of the
numerical solution, when the computational domain is truncated by a perfectly matched layer
(PML).
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Figure 4: Magnitude of the displacement at time t = 1.5 in the plane x(3) = 6000.

We have theoretically shown that our discretization is stable on a curvilinear grid, and
that the artificial dissipation makes the discrete energy decay in time (see [17] for details). This
implies that there are no exponentially growing solutions of the anisotropic elastic wave equation
with super-grid layers, implying that the approximation is stable. For isotropic elastic materials
we have numerical evidence that the super-grid method can be made as accurate as the interior
scheme [17]. We proceed by numerically investigating whether these properties generalize to the
anisotropic case.

Because it is impractical to store the numerical solution at all points in space and time,
we will limit our investigation to study the convergence of the time-dependent solution at fixed
locations in the outer parts of the domain of interest. For each grid size, we record the solution
(as function of time) at nine locations, on a uniform 3× 3 grid,

x(1)r = 2 · 103, x(2)r = (2.0, 3.6, 5.2) · 103, x(3)r = (2.0, 3.6, 5.2) · 103.

As an example, Figure 5 shows the Cartesian components of the solution for t ∈ [0, 6], at the
location xr = (2.0, 3.6, 5.2)T · 103. The difference between solutions computed with grid sizes
h = 20 and h = 10 is shown on the right side of the same figure. Note that the difference is
significantly smaller than the solution itself, indicating that it is well-resolved on the grid.

We assume that the numerical solution, uh, is a pth order accurate approximation of the
solution of the continuous problem, u, and that the relation

uh ≈ u+ hpr, (69)

holds, where r is a function that can be bounded independently of the grid size, h. It follows
from (69) that u2h ≈ u+ 2phpr and u4h ≈ u+ 4phpr. Therefore,

γ :=
‖u4h − uh‖t
‖u2h − uh‖t

≈ 4p − 1

2p − 1
= 2p + 1,

and we can estimate the convergence rate by p ≈ log2(γ − 1). Here, ‖f‖t denotes the discrete
L2-norm of f(t). We remark that the expansion (69) is only valid when the numerical solution is
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Figure 5: Solution of the Cauchy (whole-space) problem at (x(1), x(2), x(3)) = (2.0, 3.6, 5.2) · 103
as function of time, computed with grid size h = 20 (left). Difference between the numerical
solutions computed with grid size h = 20 and h = 10 (right).

resolved on the computational grid. For wave propagation problems, the resolution requirements
for a finite difference discretization can be quantified in terms of the number of grid points per
shortest wave length, P = Lmin/h, see [11]. Based on the largest significant frequency of
the Gaussian (fmax ≈ 6.37), and the slowest shear velocity (cmin = 1831), we estimate the
shortest shear wave length to be Lmin = cmin/fmax ≈ 1831/6.37 ≈ 287.6. For a fourth order
accurate difference scheme, adequate resolution can be expected if P ≥ 6, see [11] for details.
In the numerical experiments below, we use the grid sizes h = 40, 20, and 10, corresponding to
P = 7.19, 14.38, and 28.76 grid points per shortest significant wave length.

In Table 1 we report the L2 norm of the differences between the numerical solutions at the
nine locations. The observed convergence rates indicate that the numerical solution is fourth
order accurate, or better.

For the isotropic elastic wave equation, the numerical experiments in [17] indicate that, for
long times, a sixth order artificial dissipation gives smaller errors than a fourth order dissipation.
In that case we solved Lamb’s problem in an isotropic half-space, which has an analytical
solution, allowing the error in the numerical solution to be evaluated explicitly. Unfortunately,
the anisotropic elastic wave equation is very difficult to solve analytically, and it is necessary to
use a different approach to estimate the long time accuracy of the numerical solution. Here we
exploit the absence of evanescent modes in the solution of a Cachy (whole-space) problem with
homogeneous material properties. This means that the analytical solution should be identically
zero after all waves have propagated past a fixed location in space. After that time, the numerical
solution therefore equals the error. We proceed by studying the norm of the displacement,

|u|(xr, t) =
√∑3

k=1(u
(k))2(xr, t), for t ≥ t1.

We are interested in the accuracy for longer times, and extend the above simulations to run for
0 ≤ t ≤ 12. Of the locations evaluated in Table 1, xr = (2.0, 2.0, 2.0) ·103 is the furthest from the
source, at a distance d ≈ 6.928 ·103. The slowest phase velocity is cmin = 1.831 ·103, from which
we can estimate the propagation time from the source to that location: tp = 6.928/1.831 ≈ 3.784.
The Gaussian source time function (68) satisfies g(t) ≤ 10−7 for t ≥ 2t0 = 0.75. By combining
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x
(2)
r x

(3)
r ‖u4h(xr, ·)− uh(xr, ·)‖t ‖u2h(xr, ·)− uh(xr, ·)‖t ratio (γ) rate (p)

2.0 · 103 2.0 · 103 4.129 · 10−4 9.244 · 10−6 44.673 5.449

2.0 · 103 3.6 · 103 6.847 · 10−4 3.585 · 10−5 19.099 4.178

2.0 · 103 5.2 · 103 5.368 · 10−4 6.639 · 10−6 80.853 6.319

3.6 · 103 2.0 · 103 6.847 · 10−4 3.585 · 10−5 19.099 4.178

3.6 · 103 3.6 · 103 1.020 · 10−3 4.768 · 10−5 21.387 4.349

3.6 · 103 5.2 · 103 9.681 · 10−4 5.021 · 10−5 19.278 4.192

5.2 · 103 2.0 · 103 5.368 · 10−4 6.639 · 10−6 80.853 6.319

5.2 · 103 3.6 · 103 9.681 · 10−4 5.021 · 10−5 19.278 4.192

5.2 · 103 5.2 · 103 2.202 · 10−3 1.327 · 10−4 16.594 3.963

Table 1: Grid refinement study for the Cauchy (whole-space) problem. All stations are located

on the plane x
(1)
r = 2 · 103.

these estimates, we conclude that the analytical solution should reach round-off levels after
t ≥ t1 ≈ 3.784 + 0.75 = 4.534. To test this estimate, we plot the norm of the displacement at
xr = (2.0, 2.0, 2.0) · 103 in Figure 6. On the finest grid, the solution with sixth order artificial
dissipation appears to reach round-off levels after t2 ≈ 4.1. The fact that t1 > t2 indicates that
we underestimated the value of the slowest phase velocity in the direction between the source
and xr. In Figure 6, we also compare the difference between fourth and sixth order artificial
dissipation. On the finest grid, it is obvious that the sixth order dissipation gives a more accurate
numerical solution. However, the fourth order dissipation gives comparable, or slightly better,
accuracy on the two coarser grids. The numerical solutions at the other locations (given in
Table 1) show the same qualitative behavior.

Based on these limited numerical experiments, we surmise that the benefits of using a sixth
order dissipation are very limited. Furthermore, the code for the sixth order dissipation is slightly
slower than its fourth order counterpart, because it requires a wider computational stencil and
more data to be communicated after each time step. Hence, the fourth order artificial dissipation
appears to be preferrable for most practical simulations, which seldomly resolve the numerical
solution by more than 10 grid points per shortest wave length.

5.2 A half-space problem

Next, we study the half-space problem subject to a free surface boundary condition along x(3) = 0
and take the domain of interest to be

1.6 · 103 ≤ (x(2), x(3)) ≤ 10.4 · 103, 0 ≤ x(3) ≤ 4.4 · 103.

In this case, we locate the source term (67) at xs = (6, 6, 1) · 103. We choose the thickness of
the super-grid layers to be ℓ = 1.6/12 in the r(1)- and r(2)-directions of parameter space. In the
r(3)-direction, we only add a super-grid layer near the r(3) = 1 boundary, of thickness ℓ = 1.6/6.
As before, cross-sections of the solution are plotted as function of scaled parameter coordinates,
to equal (x(1), x(2), x(3)) within the domain of interest. In these scaled parameter coordinates,
all super-grid layers have thickness 1.6 · 103.
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Figure 6: Norm of the numerical solution at xr = (2.0, 2.0, 2.0) ·103 as function of time, for grid
sizes h = 40 (red), h = 20 (blue), and h = 10 (black). The artificial dissipation is of order four
and six in the left and right sub-figures, respectively.

In Figure 7 we show snapshots of the magnitude of the numerical solution with grid size
h = 20. The solution is shown along the free surface, x(3) = 0, and in the vertical plane
x(1) = 6 · 103. Due to the free surface boundary condition along x(3) = 0, the solution has
much more structure compared to the Cauchy problem, and several sets of quasi-compressional,
quasi-shear, and surface waves can be identified in the solution. Note that no reflected waves
are visible in the domain of interest at time t = 3.5 (Figure 7, bottom row).

To further investigate the accuracy of the numerical solution, we study it as function of time,
for 0 ≤ t ≤ 6, at nine spatial locations on a uniform 3× 3 grid near the boundary of the domain
of interest,

x(1)r = 2 · 103, x(2)r = (2, 4, 6) · 103, x(3)r = (0, 1, 2) · 103.
The numerical solution is calculated on three grids with sizes h = 40, 20, and 10. As before,

we estimate the convergence rate by evaluating the L2-norm of the differences. The results are
given in Table 2. The estimated convergence rates are close to four at all locations. The largest
differences occur on the symmetry line, x(2) = 6 ·103, where the solution has the most structure.
We remark that surface waves propagate at a slightly slower phase velocity than shear waves,
and therefore have a slighly shorter wave length. Hence, the number of grid points per wave
length is somewhat reduced compared to the Cauchy problem, and the numerical solution on
the coarsest grid might only be marginally resolved.

We remark that the free surface boundary condition generates evanecent modes in the solu-
tion, i.e., it decays exponentially in time. Hence, there is no time t1 after which the analytical
solution is identically zero. This prevents a direct generalization of the technique we used in
§ 5.1 for quantifying the long time reflection properties of the super-grid layers.

6 Conclusions

We have presented a fourth order accurate finite difference discretization of the elastic wave
equation in second order formulation for general, 21 parameter anisotropic, hetereogeneous,
materials. The discretization is defined on a curvilinear grid, by use of a general coordinate
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Figure 7: Half-space problem: Magnitude of the displacement at times 1.5, 2.5, and 3.5 (top
to bottom) along the free surface x(3) = 0 (left) and the x(1) = 6 · 103 plane (right). In the
latter figures, the free surface is located along the top edge. The super-grid layers have thickness
1.6 · 103. The contour levels are the same in all plots and are spaced between 0.0375 (dark blue)
and 1.5 (red) with step size 0.0375.
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x
(2)
r x

(3)
r ‖u4h(xr, ·)− uh(xr, ·)‖t ‖u2h(xr, ·)− uh(xr, ·)‖t ratio (γ) rate (p)

2.0 · 103 0 1.266 · 10−3 6.487 · 10−5 19.519 4.211

2.0 · 103 1.0 · 103 4.774 · 10−4 1.702 · 10−5 28.039 4.757

2.0 · 103 2.0 · 103 8.284 · 10−4 4.277 · 10−5 19.368 4.199

4.0 · 103 0 1.903 · 10−3 1.137 · 10−4 16.739 3.976

4.0 · 103 1.0 · 103 1.258 · 10−3 7.359 · 10−5 17.106 4.009

4.0 · 103 2.0 · 103 1.628 · 10−3 9.953 · 10−5 16.355 3.941

6.0 · 103 0 3.832 · 10−3 2.386 · 10−4 16.056 3.912

6.0 · 103 1.0 · 103 3.167 · 10−3 1.978 · 10−4 16.017 3.908

6.0 · 103 2.0 · 103 2.252 · 10−3 1.461 · 10−4 15.414 3.849

Table 2: Grid refinement study for the half-space problem. All stations are on the plane x
(1)
r =

2 · 103 and the solutions are evaluated for 0 ≤ t ≤ 6.

transformation. The proposed method generalizes our previos finite difference method [19] to
anisotropic elastic materials and curvilinear grids. The proposed method is energy conserv-
ing and stable under a CFL time-step constraint, and we have developed a practically useful
approach for estimating the time step constraint. To truncate unbounded domains, we have
generalized the super-grid technique, which previously was developed for the isotropic elastic
wave equation [17], and demonstrated that it leads to a stable numerical method with very small
artificial reflections.

It would be straight forward to extend the proposed method to higher orders of accuracy.
Such an extention relies on compatible, higher order accurate, summation by parts operators
for approximating both first and second derivatives with variable coefficients. In particular, the
difference approximations must satisfy (42) and (44), respectively. For first derivatives, it is well
know that such operators exist with up to eighth order truncation error in the interior of the
domain, with a reduction to order four on the boundary. For second derivatives with variable
coefficients, we have derived operators having truncation errors of order six and eight in the
interior, with boundary reduction to order three and four, respectively. Because we solve the
elastic wave equation in second order formulation, the solution is two orders more accurate than
the truncation error near the boundary. These operators could therefore be used to device a
sixth order accurate scheme for the anisotropic elastic wave equation.

By using the technique developed in [15], it would be straight forward to generalize the pro-
posed method to include visco-elastic attenuation. However, the number of material parameters
would increase by 21 for every visco-elastic mechanism in the model. For the isotropic visco-
elastic model, these parameters are usually determined by matching observed attenuation rates
of compressional and shear waves [9], but it is unclear how that approach would be generalized
to an anisotropic model.

26



A The M
ij matrices

By expressing the components of the stress tensor in terms of the elements of the stiffness matrix
C in (3), and identifying each term with those of (11)-(13), we get

M11 =




c11 c16 c15

c16 c66 c56

c15 c56 c55


 , M12 =




c16 c12 c14

c66 c26 c46

c56 c25 c45


 , M13 =




c15 c14 c13

c56 c46 c36

c55 c45 c35


 ,

M21 =




c16 c66 c56

c12 c26 c25

c14 c46 c45


 , M22 =




c66 c26 c46

c26 c22 c24

c46 c24 c44


 , M23 =




c56 c46 c36

c25 c24 c23

c45 c44 c34


 ,

and

M31 =




c15 c56 c55

c14 c46 c45

c13 c36 c35


 , M32 =




c56 c25 c45

c46 c24 c44

c36 c23 c34


 , M33 =




c55 c45 c35

c45 c44 c34

c35 c34 c33


 .

By inspection, the diagonal blocks M11, M22, and M33 are symmetric and M ji = (M ij)T for
i 6= j. To show thatM11 is positive definite, we take z = (z1, z2, z3)

T and y = (z1, 0, 0, 0, z3, z2)
T .

Now,
zTM11z = yTCy ≥ κyTy = κ zTz, κ > 0,

because C is positive definite. The same technique can be used to show that M22 and M33 are
positive definite.
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[16] N. A. Petersson and B. Sjögreen. User’s guide to SW4, version 1.0. Technical Report
LLNL-SM-642292, Lawrence Livermore National Laboratory, 2013. (Source code available
from computation.llnl.gov/casc/serpentine).
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